Part Number Hot Search : 
CP200 FSM893S 04001 7108M BDXXKA5W PT200KN8 TC140 C1500
Product Description
Full Text Search
 

To Download XC641A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 NCMOS Low Power Consumption N4 Voltage Regulators and 2 Voltage Detectors Built-In. NOutput Control Circuit NOutput Voltage and Detect Voltage Range : 2V ~ 5V NOutput Voltage Accuracy and Detect Voltage Range: 2% N16 Pin TSSOP Package
The XC641A series are highly precise, low power consumption, multi power supply IC s, manufactured using CMOS and laser trimming technologies. The IC consists of a highly precise reference, 4 voltage regulators, 2 voltage detectors, and an output control circuit. Because the regulators can be disabled through the EN pins, in standby, current consumption can be greatly reduced. The minimal input / output differential supports efficient voltage circuit design. The XC641A is particularly suitable for use with battery powered equipment where power supply control is all important. The series comes in a small TSSOP-16 package.
GBattery Operated Power Supply Systems GMobile Phones, Cordless Phones, and other Portable Communication Systems.
Output Voltage / Detect Voltage Range : 2V ~ 5V : Selectable in 0.1V increments ( Semi-Custom ) Highly Accurate : Setup voltage 2% Low power consumption: TYP 25A TYP 6A [ When the EN input is OFF (standard products) ] Output voltage temperature characteristics : TYP100ppm/C Small Package : TSSOP-16
10
649
PIN NUMBER
PIN NAME
FUNCTION
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
OUT4 DIN2 CD1 DOUT2 DOUT1 OUT1 EXT1 VSS EXT2 OUT2 EN1 EN2 EN3 DIN1 OUT3 VDD
Voltage Regulator 4 Output Voltage Detector 2 Input Delay Generating Circuit Output Voltage Detector 2 Output Voltage Detector 1 Output Voltage Regulator 1 Output Voltage Monitor Voltage Regulator 1 External Transistor Connection Ground Voltage Regulator 2 External Transistor Connection Voltage Regulator 2 Output Voltage Monitor Voltage Regulator 1 Enable ( Positive Logic ) Voltage Regulator 2 Enable ( Positive Logic ) Voltage Regulator 3 Enable ( Positive Logic ) Voltage Detector 1 Input Voltage Regulator 3 Output Power Supply
INPUT EN1 H L EN2 EN3
VOLTAGE REGULATOR OUTPUT
H L
-
H L
VR1 ON OFF
VR2
VR3
ON OFF
-
-
-
ON OFF
-
H = High Level : L = Low Level
10
GOrdering Information:
650
GTSSOP-16
GTSSOP-16
4 3
7 6
11 10 9 5 8 11 1 5 4 11
10
2 1 5
651
10
652
PARAMETER Input Voltage Output Voltage EXT Pin Voltage DIN Pin Voltage DOUT Pin Voltage CD1 Pin Voltage EN Pin Voltage Output Current EXT Pin Current DOUT Pin Current Power Dissipation Power Dissipation ( mounted ) Operating Ambient Temperature Storage Temperature All voltage is ground standardised. Note :
SYMBOL VIN VOUT VEXT VDIN VDOUT VCD1 VEN IOUT IEXT IDOUT Pd Pd Topr Tstg
RATINGS -0.3 ~ +12 -0.3 ~ VIN +0.3 -0.3 ~ +12 -0.3 ~ VIN +0.3 -0.3 ~ 12 -0.3 ~ VIN +0.3 -0.3 ~ VIN +0.3 200 50 20 350 630 -30 ~ +80 -40 ~ +125
Ta = 25 C UNITS V V V V V V V mA mA mA mW mW C C
Please ensure that the sum total of power used within the IC does not exceed the continuous total power dissipation (Pd) figure. The figure for total continuous power dissipation ( mounted ) represents the value when tested on a single sided glass epoxy board of dimensions : 21mm x 32mm ; t = 1.6mm
Electrical Characteristics (XC641A0001V)
Voltage Conditions
CONDITIONS Input Voltage SYMBOL VINDEF VALUE 4.4 UNITS V
Set-Up Voltage Table
CIRCUIT Voltage Regulator 1 Voltage Regulator 2 Voltage Regulator 3 Voltage Regulator 4 Voltage Detector 1 Voltage Detector 2 PARAMETER Output Voltage Output Voltage Output Voltage Output Voltage Detect Voltage Detect Voltage SYMBOL VOUT(T) VOUT(T) VOUT(T) VOUT(T) VDF1 VDF2 VALUE 3.0 3.0 3.0 3.0 3.4 2.5
10
Ta = 25 C UNITS V V V V V V
653
Voltage Regulator 1
PARAMETER Output Voltage Maximum Output Current * Load Stability * Input-Output Voltage Diff. * Supply Current Input Stability * Output Voltage Temperature Characteristics * EXT Output Voltage EXT Leak Current SYMBOL VOUT(E) IOUT max VOUT IOUT VDIF ISS VOUT VIN * VOUT VOUT Topr * VOUT VEXT ILEAK CONDITIONS IOUT=50mA VIN=VINDEF VIN=VINDEF VIN=VINDEF 1mA IOUT 100mA IOUT=100mA VIN=VINDEF, (No Load) IOUT=50mA IOUT=10mA -50 100 8 0.04 100 7 0.5 12 0.3 MIN 2.94 TYP 3.0 1000 50 MAX 3.06 UNITS V mA mV mV A %/V ppm/C V A
Ta=25C CIRCUIT 1 1 1 1 2 1 1 3
Note : 1. VOUT(T) = Specified Output Voltage : VOUT(E) = Effective Output Voltage. 2. Parameter characteristics marked with an asterisk may vary according to which type of external transistor is used. A transistor with a value of hFE = 100 or greater and a low saturation voltage is recommended. Unless otherwise stated, use of the following external components are recommended : PNP Transistor, 2SA1213-Y : RBE, 200K : CL, 10 F Tantalum Capacitor. 3. The values given for ISS refer to the actual IC values ( see application circuits ) 4. The IC's supply current is calculated as follows : Supply Current = ISS + ( Load Current / hFE ) + ( 0.6 / RBE ) 5. VDIF = { VIN1 - VOUT1 } VOUT1 = A voltage equal to 98% of the Output Voltage whenever an amply stabilised IOUT {VOUT(T)+1.0V} is input. VIN1 = The Input Voltage when VOUT1 appears as Input Voltage is gradually decreased. 6. The Maximum Output Current value represents the value at the time the Output Voltage has decreased to VOUT (E) x 0.9. Due to the limitations of Continuous Total Power Dissipation with the 2SA1213 transistor, the Maximum Output Current Value cannot be continually achieved.
Voltage Regulator 2
PARAMETER Output Voltage SYMBOL VOUT(E) IOUT max VOUT IOUT VDIF ISS VOUT VIN * VOUT VOUT Topr * VOUT VEXT ILEAK CONDITIONS IOUT=50mA VIN=VINDEF VIN=VINDEF VIN=VINDEF 1mA IOUT 100mA IOUT=100mA VIN=VINDEF, (No Load) IOUT=50mA IOUT=10mA -50 100 8 0.04 100 7 0.5 12 0.3 MIN 2.94 TYP 3.0 1000 50 MAX 3.06 UNITS V mA mV mV A %/V ppm/C V A
Ta=25C CIRCUIT 1 1 1 1 2 1 1 3
10
Maximum Output Current * Load Stability * Input-Output Voltage Diff. * Supply Current Input Stability * Output Voltage Temperature Characteristics * EXT Output Voltage EXT Leak Current
Note : Characteristics are the same as for Regulator 1.
654
Voltage Regulator 3
PARAMETER Output Voltage Load Stability Input-Output Voltage Diff. Supply Current Input Stability Output Voltage Temperature Characteristics SYMBOL VOUT(E) VOUT IOUT VDIF ISS VOUT VIN * VOUT VOUT Topr * VOUT CONDITIONS IOUT=35mA VIN=VINDEF VIN=VINDEF 1mA IOUT 35mA IOUT=35mA VIN=VINDEF, (No Load) IOUT=35mA VINDEF VIN 10.0V IOUT=35mA -30C Topr 80C 3.0 0.1 100 MIN 2.94 TYP 3.0 MAX 3.06 50 0.3 4.5 0.3 UNITS V mV V A %/V ppm/C
Ta=25C CIRCUIT 1 1 1 2 1 1
Note : 1. VOUT(T) = Specified Output Voltage : VOUT(E) = Effective Output Voltage. 2. VDIF = { VIN1 - VOUT1 } VOUT1 = A voltage equal to 98% of the Output Voltage whenever an amply stabilised IOUT {VOUT(T)+1.0V} is input. VIN1 = The Input Voltage when VOUT1 appears as Input Voltage is gradually decreased.
Voltage Regulator 4
PARAMETER Output Voltage Load Stability Input-Output Voltage Diff. Input Stability Output Voltage Temperature Characteristics SYMBOL VOUT(E) VOUT IOUT VDIF VOUT VIN * VOUT VOUT Topr * VOUT CONDITIONS IOUT=15mA VIN =VIN DEF VIN =VIN DEF 1mA IOUT 15mA IOUT=15mA IOUT=15mA VIN DEF VIN 10.0V IOUT=15mA -30C Topr 80C 0.1 100 MIN 2.94 TYP 3.0 MAX 3.06 50 0.3 0.3 UNITS V mV V %/V ppm/C
Ta=25C CIRCUIT 1 1 1 1 1
Note : 1. VOUT(T) = Specified Output Voltage : VOUT(E) = Effective Output Voltage. 2. VDIF = { VIN1 - VOUT1 } VOUT1 = A voltage equal to 98% of the Output Voltage whenever an amply stabilised IOUT {VOUT(T)+1.0V} is input. VIN1 = The Input Voltage when VOUT1 appears as Input Voltage is gradually decreased. 3. As operational shutdown cannot be achieved with Voltage Regulator 4, please standardize to the IC circuit's stand-by current parameters.
10
655
Voltage Detector 1
PARAMETER Detect Voltage Hysteresis Range Input Current Output Current Detect Voltage Temperature Characteristics SYMBOL VDF VHYS IIN IOUT VDF Topr * VOUT CONDITIONS VIN = VINDEF VIN = VINDEF VIN = VINDEF Nch VDS = 0.5V VIN = VINDEF 6.0 MIN 3.332 x 0.02 TYP 3.4 VDF x 0.05 0.8 11.5 100 MAX 3.468 x 0.08 1.4 UNITS V V A mA ppm/C
Ta=25C CIRCUIT 4 4 4 3 4
Voltage Detector 2
PARAMETER Detect Voltage Hysteresis Range Input Current Output Current Delay Circuit Current Detect Voltage Temperature Characteristics Note : The delay circuit current is controlled by the set current circuit within the IC. Delay time depends upon the capacity of the external condensor. Approximate delay time can be calculated using the following formula : TD ( msec ) = 1.8 x C ( nF ) SYMBOL VDF VHYS IIN IOUT ICDO VDF Topr * VOUT CONDITIONS VIN = VINDEF VIN = VINDEF VIN = VINDEF Nch VDS = 0.5V VIN = VINDEF VIN = VINDEF 6.0 0.25 MIN 2.450 x 0.02 TYP 2.5 VDF x 0.05 0.8 11.5 0.50 100 0.80 MAX 2.550 x 0.08 1.4 UNITS V V A mA A ppm/C
Ta=25C CIRCUIT 4 4 4 3 5 4
Input Pin
PARAMETER EN 'High Level' Voltage EN 'Low Level' Voltage EN 'High Level' Current EN 'Low Level' Voltage SYMBOL VENH VENL IENH IENL -0.5 CONDITIONS MIN 1.3 0.4 0.1 0 TYP MAX UNITS V V A A
Ta=25C CIRCUIT 1 1 1 1
10
Entire Circuit
PARAMETER Supply Current ( Stand-By ) SYMBOL ISS ISTB CONDITIONS VIN = 8V, No Load VIN = 8V, VR1 = VR2 = VR3 = OFF MIN TYP 25 6.0 MAX 37.5 9.0 UNITS A A
Ta=25C CIRCUIT 2 2
Note : The supply current (ISS) value of the entire IC is the IC's internal supply current value. ( This does not include current flowing through externally connected components nor the input current through the detect pins of voltage detectors 1, 2 )
656
GNotes on Use :
IC 1. Please sufficiently strengthen the GND wiring and the power supply (VDD) line, as when the power supply line impedance is high, the voltage regulators and detectors are prone to oscillation leading to possible instability. 2. In order to lower the power supply line impedance, we recommend that a capacitor of 10F (Tantalum) or more be connected at the shortest point possible between the VDD pin and the GND pin. 3. To protect the IC from surge at the input pin, an input protect diode is built-in. Therefore, do not apply voltages that exceed the VDD pin voltage. 4. Please ensure that the sum total of the IC's power consumption does not exceed the stipulated figure for total continuous power dissipation ( Pd ). Pd < P1 + P2 + P3 + P4 + P5 + P6 The following equations can be used to calculate the IC's power consumption : Regulator 1 : P1 = ( VDD - 0.6V ) x IEXT1, IEXT1 to IOUT1 / hFE Regulator 2 : P2 = ( VDD - 0.6V ) x IEXT2, IEXT2 to IOUT2 / hFE Regulator 3 : P3 = ( VDD - VOUT3 ) x IOUT3 Regulator 4 : P4 = ( VDD - VOUT4 ) x IOUT4 Detector 1 : P5 = VDOUT1 x IDOUT1 Detector 2 : P6 = VDOUT2 x IDOUT2 Voltage Regulator 1, 2 ( External transistor type ) 1. In order to prevent regulator oscillation ( caused by power supply impedance ), we recommend that a capacitor of 10F (Tantalum) or more be connected between the external transistor's emitter and the GND pin. 2. In order to prevent regulator phase compensation, we recommend that a capacitor of 10F (Tantalum) or more be connected between the IOUT1, IOUT2 pins and the GND pin. 3. In order to prevent oscillation we recommend that a resistor of around 200k be connected between the external transistor's base pin and emitter pin. Voltage Regulator 3, 4 ( Built-in transistor type ) 1. Please connect a capacitor of 1F (Tantalum) or more between the voltage regulator's output pins ( OUT3, OUT4 ) and the GND pin. 2. In order to prevent regulator oscillation ( caused by power supply impedance ), we recommend that a capacitor be connected between the VDD pin and the GND pin. 3. Since a short circuit protector is not built-in, when the OUT3 or OUT4 pin is short circuited to the GND pin, resulting surge current may damage the IC. Voltage Detectors 1. In order to prevent regulator oscillation ( caused by power supply impedance ), we recommend that a capacitor be connected between the VDD pin and the GND pin. 2. Should the VDD pin voltage become excessively low, we recommend that a Schottky Diode be connected between the CD1 pin and the VDD pin, in order to prevent voltages over the established VDD + 0.3V being applied to the capacitor connection pin ( CD1 ). Please use a Schottky Diode of VF = 0.3V ( IF = 10mA ). If a large reverse current, IR (max.), is used, the delay circuit current will increase and delay time will be shortened. 3. When not using the delay circuit, please use the IC with the CD1 pin open.
10
657
Input Pin
The XC641A has a built-in circuit to protect the IC against surge at the input pin. Should a voltage higher than VDD be applied at the input pin, please note that current will flow from the input pin to VDD. (Use within the stipulated absolute maximum ratings).
10
658
10
659
(1) OUTPUT VOLTAGE vs. INPUT VOLTAGE
Output Voltage:VOUT (V)
Input Voltage:VIN (V)
Output Voltage:VOUT (V)
Input Voltage:VIN (V)
Output Voltage:VOUT (V)
Output Voltage:VOUT (V)
Input Voltage:VIN (V)
Input Voltage:VIN (V)
10
(2) OUTPUT VOLTAGE vs. OUTPUT CURRENT
Output Voltage:VOUT (V)
Output Current:IOUT (mA)
Output Voltage:VOUT (V)
Output Current:IOUT (mA)
660
(2) OUTPUT VOLTAGE vs. OUTPUT CURRENT
Output Voltage:VOUT (V)
Output Current:IOUT (mA)
Output Voltage:VOUT (V)
Output Current:IOUT (mA)
(3) SUPPLY CURRENT vs. INPUT VOLTAGE
Supply Current:ISS (A)
Input Voltage:VDD (V)
Supply Current:ISS (A)
Input Voltage:VDD (V)
Stand-By
Supply Current:ISS (A) Supply Current:ISS (A)
10
Input Voltage:VDD (V)
Input Voltage:VDD (V)
661
(4) DROPOUT VOLTAGE vs. OUTPUT CURRENT
Dropout Voltage:Vdif (V)
Output Current:IOUT (mA)
Dropout Voltage:Vdif (V)
Output Current:IOUT (mA)
Dropout Voltage:Vdif (V)
Output Current:IOUT (mA)
Dropout Voltage:Vdif (V)
Output Current:IOUT (mA)
10
(5) EN PIN INPUT LEVEL VOLTAGE vs. INPUT VOLTAGE
EN Pin Input Level Voltage:VEH (V) EN Pin Input Level Voltage:VEH (V)
Input Voltage:VDD (V)
Input Voltage:VDD (V)
662
(5) EN PIN INPUT LEVEL VOLTAGE vs. INPUT VOLTAGE
EN Pin Input Level Voltage:VEH (V)
Input Voltage:VDD (V)
(6) VD OUTPUT VOLTAGE vs. INPUT VOLTAGE
Output Voltage:VOUT (V)
Input Voltage:VIN (V)
Output Voltage:VOUT (V)
Input Voltage:VIN (V)
(7) OUTPUT CURRENT vs. INPUT VOLTAGE
10
Output Current:IOUT (mA)
Output Current:IOUT (mA)
Input Voltage:VDD (V)
Input Voltage:VDD (V)
663
(8) VD INPUT CURRENT vs. INPUT VOLTAGE
Input Current:IIN (A)
Input Voltage:VIN (V)
Input Current:IIN (A)
Input Voltage:VIN (V)
(9) DELAY TIME (FALL) vs. OUTPUT PIN CAPACITANCE
Delay Time:TDL (sec)
Output Pin Capacitance (F)
Delay Time:TDL (sec)
Output Pin Capacitance (F)
10
(10) DELAY TIME (RISE) vs. INPUT VOLTAGE
Delay Time:TDL (sec)
Input Voltage:VDD (V)
Delay Time:TDL (sec)
Input Voltage:VDD (V)
664
(11) DELAY TIME (FALL) vs. CD PIN EXTERNAL CAPACITANCE
(12) DELAY TIME (RISE) vs. CD PIN EXTERNAL CAPACITANCE
Delay Time:TDL (sec)
CD External Capacitance (F)
Delay Time:TDL (sec)
CD External Capacitance (F)
(13) LOAD TRANSIENT RESPONSE
Output Voltage Change: VOUT(V)
Output Voltage Change: VOUT(V)
Output Current:IOUT (mA)
Output Voltage
Output Current:IOUT (mA)
Output Voltage
Output Current
Output Current
Time (40sec/div)
Time (40sec/div)
10
Output Voltage Change: VOUT(V)
Output Voltage Output Voltage
Output Current
Output Current
Time (150 sec/div)
Time (200 sec/div)
Output Voltage Change: VOUT(V)
Output Current:IOUT (mA)
Output Current:IOUT (mA)
665
(14) INPUT TRANSIENT RESPONSE 1
Output Voltage Change: VOUT(V)
CL=10F(Tantalum), IOUT=10mA CL=10F(Tantalum),IOUT=100mA
Input Voltage
Input Voltage
Output Voltage
Output Voltage
Time (200 sec/div)
Time (200 sec/div)
Output Voltage Change: VOUT(V)
CL=10F(Tantalum), IOUT=10mA
CL=10F(Tantalum), IOUT=100mA
Input Voltage
Input Voltage
Output Voltage
Output Voltage
Time (200 sec/div)
Time (200 sec/div)
10
Output Voltage Change: VOUT(V)
Input Voltage Input Voltage
Output Voltage
Output Voltage
Time (200 sec/div)
Time (200 sec/div)
666
Output Voltage Change: VOUT(V)
CL=1F(Tantalum), IOUT=1mA
CL=1F(Tantalum),IOUT=10mA
Input Voltage:VIN (V)
Input Voltage:VIN (V)
Output Voltage Change: VOUT(V)
Input Voltage:VIN (V)
Input Voltage:VIN (V)
Output Voltage Change: VOUT(V)
Input Voltage:VIN (V)
Input Voltage:VIN (V)
(14) INPUT TRANSIENT RESPONSE 1
Output Voltage Change: VOUT(V)
CL=1F(Tantalum), IOUT=1mA CL=1F(Tantalum),IOUT=10mA
Input Voltage
Input Voltage
Output Voltage
Output Voltage
Time (200 sec/div)
Time (400 sec/div)
(15) INPUT TRANSIENT RESPONSE 2
CL=10F(Tantalum), IOUT=10mA
CL=10F(Tantalum), IOUT=10mA
Output Voltage:VOUT (V)
Input Voltage
Input Voltage
Output Voltage
Output Voltage
Time (250 sec/div)
Time (250 sec/div)
Output Voltage:VOUT (V)
Input Voltage:VIN (V)
Input Voltage:VIN (V)
Output Voltage Change: VOUT(V)
Input Voltage:VIN (V)
Input Voltage:VIN (V)
10
CL=1F(Tantalum),IOUT=10mA CL=1F(Tantalum),IOUT=10mA
Output Voltage:VOUT (V)
Input Voltage
Input Voltage
Output Voltage
Output Voltage
Time (250 sec/div)
Time (200 sec/div)
Output Voltage:VOUT (V)
Input Voltage:VIN (V)
Input Voltage:VIN (V)
667
(16) EN TRANSIENT RESPONSE
VIN=3.8V, IOUT=50mA
VIN=4.0V,IOUT=50mA
EN Input Voltage
EN Input Voltage
Output Voltage:VOUT (V)
Output Voltage:VOUT (V)
Output Voltage
Output Voltage
Time (200 sec/div)
Time (200 sec/div)
VIN=3.8V,IOUT=35mA
EN Input Voltage
Output Voltage:VOUT (V)
Output Voltage
Time (200 sec/div)
10
668


▲Up To Search▲   

 
Price & Availability of XC641A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X